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ABSTRACT

Modern artificial intelligence relies on networks of agents that collect data, process information, and exchange it with neighbors to collaboratively solve optimization and learning problems.
We present a novel distributed algorithm to address a broad class of these problems in open networks, where the number of participating agents may vary due to several factors, such
as autonomous decisions, heterogeneous resource availability, or DoS attacks. Extending the current literature, the convergence analysis of the proposed algorithm is based on the newly
developed Theory of Open Operators, which characterizes an operator as open when the set of components to be updated changes over time, yielding time-varying operators acting on
sequences of points of different dimensions and compositions. The mathematical tools and convergence results developed here provide a general framework for evaluating distributed
algorithms in open networks. As an illustrative example, the proposed algorithm is used to solve classification problems with logistic loss functions.

STATE-OF-THE-ART OF OPTIMIZATION/LEARNING IN OPEN MULTI-AGENT SYSTEMS

[Ref.] Algorithm Assumptions
on the problem

Assumptions
on the network

Time independent
parameters

Convergence
metric

Convergence
rate

Hendrickx et al. (2020) DGD Static + Smooth + Strongly convex +
Minimizers in a ball 7 Only replacement 3 Distance from

minimizers
Linear
(inexact)

Hsieh et al. (2021) Dual averaging Static + Lipschitz + Convex +
Shared convex constraint set

≈ Vertex-connected†
(jointly) 7 Regret Sublinear

(if the network’s size is known)
Hayashi (2023) Sub-gradient Time-varying + Lipschitz + Convex +

Shared compact constraint set
≈ Vertex-connected†

(jointly) 7 Regret Sublinear
(if the network’s size is bounded)

Deplano et al. (2025) ADMM Time-varying + Semicontinuous + Convex +
Unconstrained 3 Connected and sparse‡ 3 Distance from

minimizers
Linear
(exact)

† Gk = (Vk, Ek) is jointly vertex connected if ∃B, κ ≥ 1 such that at least κ nodes need to be removed to disrupt the connectivity of the union graph
(∪k

t=k−B Vt,
∪k

t=k−B Et
)
for all k ∈ N.

‡ Gk = (Vk, Ek) is sparse if |Ek| ≤ µ|Vk| for some µ > 0.

PROBLEM SET-UP

We consider the following optimization problem
min
y∈Rp

∑
i∈Vk

f i
k(y), (1)

where p ∈ N denotes the number of variables, f i
k : Rp 7→ R denotes the local objec-

tive function of an agent i ∈ Vk in the network at time k, where Vk represents the time-
varying set of agents, yielding anOpen Multi-Agent Systems (OMAS). The agents are
linked according to a graph Gk = (Vk, Ek), which is assumed to be undirected and con-
nected at all times. The set of agents linked to the i-th agent at time k is denoted by
N i

k = {j ∈ Vk : (i, j) ∈ Ek}. We define:

• The set of remaining agents is VR
k = Vk ∩ Vk−1;

• The set of arriving agents is VA
k = Vk \ Vk−1;

• The set of departing agents is VD
k = Vk \ Vk+1.

VD
k−1 VR

k VA
k

Vk−1

Vk

To solve the problem in (1) in a distributed way over an open network of agents, we propose
the open version of ADMM, which we call Open ADMM and whose implementation is
detailed in Algorithm 1. Open ADMM requires each agent i ∈ Vk to update/initialize a
state variable xijk ∈ Rp for every agent j ∈ N i

k with which it has an open communication
channel. Thus, one needs to define:
• The set of remaining neighbors isRi

k = N i
k ∩N i

k−1;
• The set of arriving neighbors is Ai

k = N i
k \ N i

k−1;
• The set of departing neighbors is Di

k = N i
k \ N i

k+1.
We formalize next our set of assumptions.
Assumption 1.The problem in (1) is such that, ∀k ∈ N:

X

(i) the local cost functions f i
k are proper, lower semi-continuous, and convex for all i ∈ Vk;

(ii) the set of minimizers Y i,⋆
k ⊆ Rp for each local cost function f i

k is not empty;
(iii) the distance between two consecutive global solutions y⋆k ∈ Y⋆

k and y
⋆
k−1 ∈ Y⋆

k−1 is upper
bounded by a constant σ ≥ 0;

(iv) the distance between any local solution yi,⋆k ∈ Y i,⋆
k and any global solution y⋆k ∈ Y⋆

k is
upper bounded by ω ≥ 0.

OPEN OPERATOR THEORY [R1]

Theorem 1: Consider the iteration of a time-varying open operator Tk : RIk−1 → RIk given
component-wise for i ∈ Ik by

xik = Ti
k(xk−1) =

{
Fi
k(xk−1) if i ∈ Rk = Ik−1 \ Dk−1,

xA,ik if i ∈ Ak = Ik \ Ik−1.

Dk−1 Rk Ak

Ik−1

Ik
and let X̂k := {x ∈ RIk | x = Fk+1(x)} be the trajectory of points of interest (TSI). If:

X

(a)Fk is paracontractive with γ ∈ (0, 1), i.e., d(Fk+1(x), X̂k) ≤ γ · d(x, X̂k);
(b) the TSI has bounded variation B ≥ 0, i.e., dSH(X̂k, X̂k−1) ≤ B

√
|Rk|;

(c) the arrival process is bounded with H ≥ 0, i.e., d(xAk , X̂k) ≤ H
√

|Ak|.
(d) the departure process is bounded with β ∈ (γ, 1), i.e.,

√
|Ik| ≥ β

√
|Ik−1|;

then, the open sequence {xk ∈ RIk : k ∈ N} converges linearly with rate θ = γ/β ∈ (0, 1)
to the TSI within a radius

R =
B +H

1− θ
.

OPEN ADMM [R1]

Algorithm 1: Open and distributed ADMM
Input: The relaxation α ∈ (0, 1) and the penalty ρ > 0
Output: The agent return an approximate solution yik to the optimiza-
tion problem in (1)

for k = 0, 1, 2, . . . each agent i ∈ Vk:
if i ∈ VA

k is an arriving agent:
initializes the state variables to a local optimum

xijk = ρyi,⋆k , ∀j ∈ N i
k

else if i ∈ VR
k is a remaining agent:

receives yjk−1, x
ji
k−1 from each neighbor j ∈ Ri

k

updates the remaining state variable according to
xijk = (1− α)xijk−1 − αxjik−1 + 2ραyjk−1, ∀j ∈ Ri

k

initializes the new state variables to a local optimum
xijk = ρyi,⋆k , ∀j ∈ Ai

k

end if
updates the output variable

yik = prox1/ρη
i
k

f i
k

( 1

ρηik

∑
j∈N i

k

xijk

)
transmits yik, x

ij
k to each neighbor j ∈ N i

k

end for
Theorems 2-3: Consider an OMAS executing Open ADMM to distributedly solve an
optimization problem as in (1) under Assumption 1. If the standard iteration is paracon-
tractive with γ ∈ (0, 1) and the departure process is bounded with β ∈ (γ, 1), then the
open sequence {xk : k ∈ N} generated by the open operator of Open ADMM converges
with linear rate θ = γ/β ∈ (0, 1) to the TSI within a radius R,

lim sup
k→∞

d(xk, X̂k)√
|pnk|

≤ ρ
(σ + ω)

(1− θ)
=: R.

Moreover, if ∃µ > 0 such that |Ek| ≤ µ|Vk|, then, the open sequence of agents’ estimates
converges linearly to the consensus state on the optimal solutions within a radiusµR, namely

lim sup
k→∞

d(yk, C⋆
k)√

pnk
= µR =: ∆.

NUMERICAL SIMULATIONS

We apply the Open ADMM to a classification
problem, characterized by the (static) local costs
f i
k :=

1
mi

∑mi

j=1 log
(
1+exp

(
−bi,ja

>
i,jx

))
+ ϵ

2||x||
2

where ai,j ∈ Rp and bi,j ∈ {−1, 1} are randomly
generated pairs of feature vector and label, with
p = 5, mi = 150, and ϵ = 0.05.
On the right we show the results for open networks
in which the arrival and departure events occur ac-
cording to the Poisson distribution Pois(λ) for dif-
ferent values of λ. Arriving agents are connected
to a number of remaining agents equal to the aver-
age degree in the network, and the network starts
with n0 = 50 agents.
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