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ABSTRACT

Modern artificial intelligence relies on networks of agents that collect data, process information, and exchange it with neighbors to collaboratively solve optimization and learning problems.
We present a novel distributed algorithm to address a broad class of these problems in open networks, where the number of participating agents may vary due to several factors, such
as autonomous decisions, heterogeneous resource availability, or DoS attacks. Extending the current literature, the convergence analysis of the proposed algorithm 1s based on the newly
developed Theory of Open Operators, which characterizes an operator as open when the set of components to be updated changes over time, yielding time-varying operators acting on
sequences of points of different dimensions and compositions. The mathematical tools and convergence results developed here provide a general framework for evaluating distributed
algorithms 1n open networks. As an 1llustrative example, the proposed algorithm 1s used to solve classification problems with logistic loss functions.

STATE-OF-THE-ART OF OPTIMIZATION/LEARNING IN OPEN MULTI-AGENT SYSTEMS

: Assumptions Assumptions Time independent Convergence Convergence
[Ret.] Algorithm on the problem on the network parameters metric rate
: Static + S th + St 1 + Dist f L

Hendrickx etal. (2020)  DGD 7 Mimimizersinaball X Only replacement / minimizers (inexact)

: : Static + Lipschitz + Convex + Vertex-connected' Sublinear
Hsich et al. (2021) Dual averaging Shared convex constraint set (jointly) X Regret (if the network’s size 1s known)

: : Time-varying + Lipschitz + Convex + Vertex-connected! Sublinear

Hayashi (2023) Sub-gradient Shared compact constraint set (jointly) X Regrel  (if the network’s size is bounded)
Deplano etal. (025)  ADMM  HHmenvaiying s ot ia s FCOMET /- Connected and sparse’ v BIEEE O (exact)

"G = (Wi, &) is jointly vertex connected if 3B, x > 1 such that at least ~ nodes need to be removed to disrupt the connectivity of the union graph ( Uf: 5 Vi Uf: B St) for all £ € N.
Y G = (Wi, &) is sparse if |£| < p|Vi| for some ;i > 0.

PROBLEM SET-UP

OPEN ADMM [R1]

We consider the following optimization problem

Algorithm 1: Open and distributed ADMM

?El%é; few), (1) Input: The relaxation a € (0, 1) and the penalty p > 0
1€V | Output: The agent return an approximate solution y;. to the optimiza-
where p € N denotes the number of variables, f; : R” — R denotes the local objec- tion problem in (1)
tive function of an agent ¢ € V. 1n the network at time k, where V;. represents the time- for k =0,1,2,... each agent: c V,:
varying set of agents, yielding anOpen Multi-Agent Systems (OMAS). The agents are if i € V;} is an arriving agent:
linked according to a graph G, = (Vy, &), which is assumed to be undirected and con- initializes the state variables to a local optimum

nected at all times. The set of agents linked to the -th agent at time £ 1s denoted by

1] 1,% : i

. T = , Vi e N,

r=1{j€Vy:(i,7) € E}. We define: o - b Pyk J k
else if € V" is a remaining agent:

receives y,._,, x;._, from each neighbor j € R},

updates the remaining state variable according to

e The set of remaining agents is VX = V., NV, _1;
e The set of arriving agents is V> = V. \ V;._1;

e The set of departing agents is VP = V; \ Vj.1. vy = (1—a)r) | — azx) | +2payl_,, Vj € R},
To solve the problem in (1) in a distributed way over an open network of agents, we propose mitializes the new state Vgriables toa local optimum
the open version of ADMM, which we call Open ADMM and whose implementation is ! = py,”, Vi e A;
detailed in Algorithm 1. Open ADMM requires each agent ¢ € V to update/initialize a end if
state variable x,/ € R? for every agent j € N, with which it has an open communication updates the output variable
channel. Thus, one needs to define: ; Von (1 i
: o o . . : - : Y = rOsz‘ (—szk)
« The set of remaining neighbors is R}, = N " N/_,; S Syt
e The set of arriving neighbors is A = N \ N, 13 transmits 4., 2"/ to each neighbor j € A}
* The set of departing neighbors is D;, = N} \ V], . end for
We formalize next our set of assumptions. Theorems 2-3: Consider an OMAS executing Open ADMM to distributedly solve an
Assumption 1. The problem in (1) is such that, Vk € N: optimization problem as in (1) under Assumption 1. If the standard iteration is paracon-

tractive with v € (0, 1) and the departure process is bounded with 5 € (v, 1), then the
open sequence {x; : k € N} generated by the open operator of Open ADMM converges
with linear rate 6 = v/ € (0, 1) to the TSI within a radius R,

d(xg, 2\?;{) - (0 + w)

(i) the local cost functions [ are proper, lower semi-continuous, and convex for all i € Vy;
(ii) the set of minimizers y;;* C R? for each local cost function f/i Is not empty;

(iii) the distance between two consecutive global solutions y; € Y and y;_, € Vi, is upper

bounded by a constant o > 0, lim sup N T R.
(iv) the distance between any local solution y,i’* = ;)/,i’* and any global solution y; € YV is k—oo vy pr| (1-0)
upper bounded by w > 0. Moreover, if du > 0 such that |Ex| < u|Vy|, then, the open sequence of agents’ estimates

converges linearly to the consensus state on the optimal solutions within aradius /R, namely

d(yx, Cr)

OPEN OPERATOR THEORY [R1] msup = oo S HE=A
Theorem 1: Consider the iteration of a time-varying open operator T, : R+ — RZ% given
component-wise for ¢ € Z; by o NUMERICAL SIMULATIONS

We apply the Open ADMM to a classification
problem, characterized by the (static) local costs SA=01=A=1+A=10+ =100

101 ¢ ‘ ‘ |
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fi=pn 2o log (L+exp (=bija, 7)) + 5]« %81% WWW* “WW MW \
where a; ; € R and b; ; € {—1, 1} are randomly %‘; \lw\ I q\\ kNN\] M\W\

N
generated pairs of feature vector and label, with 107

R (Fi(z._)) ifieRy=Twi\ Dy,
o= Ty = () HiER =T DL
\CL’]{ if 7 € .Ak — Ik \Ik—l-

€k

and let X}, .= {z € R% | x = Fi,1(x)} be the trajectory of points of interest (TSI). If:

(a) F}, is paracontractive with v € (0, 1), i.e., d(Fip1(x), X)) < v - d(z, X3); p =5, m; = 150, and € = 0.05. 10,
; . . . % % . 10—10
(b) the TSI has bounded variation B > 0, i.e., deu( X%, X _1) < BV/I[Ril; On the right we show the results for open networks 300 |
(c) the arrival process is bounded with H > 0, i.e., d(zy, X)) < H /| Ayl in which the arrival and departure events occur ac-
(d) the departure process is bounded with 5 € (v, 1), i.e., \/|Ix| > /‘ Tl cording to the Poisson distribution Pois(\) for dif- = 150,
T . . ferent values of A. Arriving agents are connected '
then, the open sequence {x; € R* : k € N} converges linearly with rate 8 = /5 € (0, 1) .. 0
- . to a number of remaining agents equal to the aver- ol

to the TSI within a radius :

B+ H age degree 1n the network, and the network starts

R = 0 with ny = 50 agents.
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